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Abstract The prior distribution of an attribute in a naïve Bayesian classifier is
typically assumed to be a Dirichlet distribution, and this is called the Dirichlet assump-
tion. The variables in a Dirichlet random vector can never be positively correlated and
must have the same confidence level as measured by normalized variance. Both the
generalized Dirichlet and the Liouville distributions include the Dirichlet distribution
as a special case. These two multivariate distributions, also defined on the unit simplex,
are employed to investigate the impact of the Dirichlet assumption in naïve Bayesian
classifiers. We propose methods to construct appropriate generalized Dirichlet and
Liouville priors for naïve Bayesian classifiers. Our experimental results on 18 data
sets reveal that the generalized Dirichlet distribution has the best performance among
the three distribution families. Not only is the Dirichlet assumption inappropriate, but
also forcing the variables in a prior to be all positively correlated can deteriorate the
performance of the naïve Bayesian classifier.

Keywords Conjugate · Dirichlet assumption · Generalized Dirichlet distribution ·
Liouville distribution · Naïve Bayesian classifier

1 Introduction

Naïve Bayesian classifiers are a widely used classification tool in many applica-
tions. There are two important assumptions for the functionality of naïve Bayesian
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classifiers. The first one is that the prior distribution of a discrete variable or a
discretized continuous variable is implicitly or explicitly assumed to be a Dirichlet dis-
tribution. Since the Dirichlet distribution is conjugate to the multinomial distribution,
the Bayesian updating in naïve Bayesian classifiers is simple. The second assump-
tion specifies that attributes are independent of each other when the class value is
given. This conditional independence assumption greatly increases the computational
efficiency of naïve Bayesian classifiers.

Although the conditional independence assumption seems to be unreasonable, many
researches have shown that this assumption is not as unrealistic as originally thought
(Langley et al. 1992; Domingos and Pazzani 1997). The key factor for the feasibility
of the conditional independence assumption is that the evaluation of predictions is
based on a measure called zero-one loss. A prediction can be either correct, and the
minimum zero-one loss is achieved, or wrong regardless of the process for generating
the prediction. Thus, even though almost none of the real data sets satisfy the con-
ditional independence assumption, the naïve Bayesian classifier still works well, and
sometimes outperforms other classification tools.

The Dirichlet assumption is also essential for the operation of naïve Bayesian clas-
sifiers. The popular Laplace’s estimate (Cestnik and Bratko 1991) and m-estimate
approach (Mitchell 1997) for naïve Bayesian classifiers imply that the prior for an
attribute is a Dirichlet distribution. The Dirichlet distribution has many advantages
in being a prior for Bayesian analysis, such as the conjugate property, computational
efficiency of its moments, and the arbitrariness of variables’ order. However, the restric-
tions on the Dirichlet distribution are strenuous. In a Dirichlet random vector, all pairs
of variables must be negatively correlated, and all variables must have the same nor-
malized variance, as will be presented in Sect. 2. These restrictions can be vital for
the Dirichlet distribution to be an appropriate prior, but no research has been done to
investigate their impact on the performance of the naïve Bayesian classifier.

To study the impact of the Dirichlet assumption, we will pick two multivariate
distributions, the generalized Dirichlet and Liouville distributions, that are also defined
on the unit simplex as prior distributions to evaluate their classification performance.
Both generalized Dirichlet and Liouville distributions allow variables to be positively
correlated. Constructing a generalized Dirichlet distribution in which variables have
the same mean but different normalized variances is possible. Both of the two dis-
tributions are different extensions of the Dirichlet distribution. Thus, naïve Bayesian
classifiers will be assumed to have either generalized Dirichlet priors or Liouville pri-
ors to investigate the impact of the Dirichlet assumption. Our experimental results will
show that the generalized Dirichlet distribution generally has the best performance,
which suggests that the Dirichlet assumption is inappropriate for naïve Bayesian
classifiers.

This article is organized as follows. Section 2 briefly introduces the basic properties
of the Dirichlet distribution and the functionality of the two assumptions for naïve
Bayesian classifiers. We will also point out the restrictions of the Dirichlet distribu-
tion in being a prior for Bayesian analysis. Some properties of the generalized Dirichlet
and the Liouville distributions are presented in Sect. 3. The way to construct either a
generalized Dirichlet or Liouville prior for a naïve Bayesian classifier is described in
Sect. 4. We then analyze the performance of the naïve Bayesian classifier on 18 real
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data sets when it has a Dirichlet prior, a generalized Dirichlet prior, or a Liouville prior,
and discuss the experimental results in Sect. 5. The conclusions and future directions
of this research are summarized in Sect. 6.

2 The Dirichlet assumption for naïve Bayesian classifiers

In this section, we will introduce some basic properties of the Dirichlet distribution and
discuss its restrictions. We then review the operation of naïve Bayesian classifiers to
explain the function of the two assumptions: the conditional independence assumption
and the Dirichlet assumption.

2.1 Dirichlet distributions

Definition 1 A random vector � = (θ1, θ2, . . . , θk) has a k-variate Dirichlet distri-
bution with parameters αj > 0 for j = 1, 2, . . . , k + 1 if it has density

f(�) = �(α1 + α2 + · · · + αk+1)

�(α1)�(α2) · · · �(αk+1)

k
�
i=1

θ
αj−1
j (1 − θ1 − · · · − θk)

αk+1−1

for θ1 + θ2 + · · · + θk ≤ 1 and θj ≥ 0 for j = 1, 2, . . . , k. This distribution will be
denoted Dk(α1, α2, . . . , αk; αk+1).

The properties of the Dirichlet distribution can be found in Wilks (1962). The gen-
eral moment function given in Lemma 1 below can be used to study the properties of
the Dirichlet distribution.

Lemma 1 (Wilks 1962) If � = (θ1, θ2, . . . , θk) follows Dk(α1, α2, . . . , αk; αk+1),
then the general moment function of � is given by

E(θ
r1
1 θ

r2
2 · · · θ rk

k ) =
�

k
j=1�(α j + r j )�

(
�

k+1
j=1α j

)

�
k
j=1�(α j )�

(
�

k+1
j=1α j + �

k
j=1r j

) .

When random vector � = (θ1, θ2, . . . , θk) has a k-variate Dirichlet distribution
Dk(α1, α2, . . . , αk; αk+1), by Lemma 1, we have

E(θj) = αj

α
,

Var(θj) = αj(αj + 1)

α(α + 1)
−

(αj

α

)2

for j = 1, 2, . . . , k+1, where α = α1+α2+· · ·+αk+1. For any j �= m, the covariance
between θj and θm is

Cov(θj, θm) = αjαm

α(α + 1)
− E(θj)E(θm) = − 1

α + 1
E(θj)E(θm).
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Hence, the variables in a Dirichlet random vector are all negatively correlated, and
this is called a negative-correlation requirement. Note that the number of parameters
in a k-variate Dirichlet distribution is k + 1. In constructing a Dirichlet prior, if the
mean probabilities of the variables have been considered, there is only one degree
of freedom (by selecting the value of α) that can be used to adjust the spread of the
distribution. This implies that a Dirichlet prior is inappropriate for specifying positive
correlations among variables.

Lemma 2 (Wong 2005) Let random vector � = (θ1, θ2, . . . , θk) have a k-variate
Dirichlet distribution Dk(α1, α2, . . . , αk; αk+1). Then

(1) E(θj)/E(θm) = Cov(θi , θ j )/Cov(θi , θm) for any i �= j, m.
(2) If E(θ j )/E(θm) = b for some b ≥ 1, we will have 1 ≤ V ar(θ j )/V ar(θm) ≤ b.

Lemma 2 shows that in a Dirichlet random vector, E(θj)/E(θm) must be exactly
equal to Cov(θi, θj)/Cov(θi, θm) for any i �= j, m. In addition, when E(θj) > E(θm),
Var(θj)/Var(θm) cannot be larger than E(θj)/E(θm). This implies that when we use
the mean probabilities to solve the parameters of a Dirichlet distribution, we also set
strenuous constraints on the variances and the covariances of the variables. Part 2 of
Lemma 2 also indicates that in a Dirichlet random vector, variables with the same
mean will have the same variance.

Bier and Yi (1995) define the normalized variance of a variable U defined on [0,1] as:

NV(U) = Var(U)

E(U)[1 − E(U)] .

For the variables in a random vector defined on the unit simplex, the normalized vari-
ance of each variable can be thought of as the analyst’s relative uncertainty about that
variable. A variable with a small normalized variance is less uncertain than a variable
with a large normalized variance.

Theorem 1 The variables in a Dirichlet random vector have the same normalized
variance.

Proof Suppose that the joint distribution of (θ1, θ2, . . . , θk) is a Dirichlet distribu-
tion Dk(α1, α2, . . . , αk; αk+1). By Lemma 1, variable θj has a beta distribution with
parameters αj and α − αj, where α = α1 + α2 + · · · + αk+1. Thus, the normalized
variance of θj is

NV(θj) = Var(θj)

E(θj)[1 − E(θj)] = 1

α + 1
,

which does not depend on the index j. ��
Definition 2 Let � = (θ1, θ2, . . . , θk), and let Vs = 1 − θ1 − · · · − θs for some
s < k. Then (θ1, θ2, . . . , θs) is said to be neutral if it is independent of (θs+1/Vs,
θs+2/Vs, . . . , θk/Vs). If (θ1, θ2, . . . , θs) is neutral for all s < k, then � is said to be
completely neutral.
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Connor and Mosimann (1969) showed that every permutation of the variables in
a Dirichlet random vector is completely neutral. This implies that the order of the
variables in a Dirichlet random vector is arbitrary. For example, suppose that (θ1, θ2,
θ3) follows D3(α1, α2, α3; α4), and let θ4 = 1− θ1 − θ2 − θ3. Then (θ3, θ1, θ2) follows
D3(α3, α1, α2; α4), (θ2, θ4, θ1) follows D3(α2, α4, α1; α3), and so on. This symmetric
property makes the construction of a Dirichlet prior much easier. Theorem 1 tells us
that in selecting a Dirichlet prior, our confidence levels for all variables, measured by
normalized variances, must be the same. This restriction is called the equal-confidence
requirement.

For a training data set with n instances, let yj be the number of occurrences of the jth
possible outcome of an attribute for j = 1, 2, . . .., k+1. Then the training data for this
attribute can be represented as y = {y1, y2, . . ., yk+1}. Suppose that the likelihood
function of the data L(y|�) follows a multinomial distribution. Since the posterior
density f(�|y) is proportional to the product L(y|�)f(�), it is not difficult to show
that the Dirichlet distribution is conjugate to the multinomial likelihood function, as
in the result given in the following lemma.

Lemma 3 (Wong 2007) When � = (θ1, θ2, . . . , θk) follows Dk(α1, α2, . . . , αk;
αk+1), and L(y|�) follows a multinomial distribution, the posterior density f(�|y)

is Dk(α
′
1, α′

2, . . . , α
′
k; α′

k+1), where α′
j = α j + y j for j = 1, 2, . . . , k + 1.

2.2 Naïve Bayesian classifiers

A classification problem usually involves an instance x with attribute values x1,
x2, . . ., xN for determining its class value c. The naïve Bayesian classifier calculates
the conditional probability p(cj|x) for all classes cj and picks the class with the largest
conditional probability to be the predicted class of instance x. By the Bayes’ theorem,
this conditional probability can be rewritten as

p(cj|x) = p(x|cj)p(cj)

p(x)
∝ p(cj)p(x1, x2, . . . , xN|cj).

The proportion of the instances with class cj in the training data is an estimate of p(cj).
If we can estimate p(x1, x2, . . ., xN|cj) for any given xi and cj, then the predicted class
of x can be determined.

In general, estimating p(x1, x2, . . ., xN|cj) for all possible xi and cj from avail-
able data can be difficult, or some of the estimates can be unreliable, except when
the data size is large. If the attributes are independent when the class value is given,
the estimate of this probability can be simplified as �N

i=1p(xi|cj), which is named the
conditional independence assumption. Probability p(xi|cj) represents the proportion
of the instances with class cj and attribute Xi = xi to the instances with class cj. Esti-
mating p(xi|cj) for any given xi and cj will not be a problem, except when the number
of instances with class cj and attribute Xi = xi is zero. When p(xi|cj) = 0 for some
i, the value of p(cj|x) will be zero regardless of the values of p(xm|cj) for all m �= i.
This can greatly distort the classification result. Many researchers therefore choose
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the Laplace’s estimate αj = 1 for all j to compose a noninformative Dirichlet prior;
i.e., all possible outcomes of an attribute have the same prior mean probability.

For each possible class value cj, a (discretized) attribute X with k + 1 possible
outcomes has a random vector � = (θ1, θ2, . . . , θk) to represent the occurring prob-
abilities of its possible outcomes 1 through k. The Dirichlet assumption for naïve
Bayesian classifiers sets a Dirichlet prior Dk(1, 1, . . . ,1; 1) for random vector � = (θ1,
θ2, . . . , θk) when the Laplace’s estimate is used. Since every instance is collected inde-
pendently, the likelihood function of available data y given � will follow a multinomial
distribution. By Lemma 3, random vector �|y will have a Dirichlet distribution Dk(α

′
1,

α′
2, . . . , α

′
k; α′

k+1), where α′
j = yj + 1 for j = 1, 2, . . . , k + 1. Let θm be the vari-

able corresponding to possible outcome xi of attribute Xi. Then the posterior mean
E(θm|y) = (ym + 1)/(n + k + 1) is the estimate of p(xi|cj) for calculating the clas-
sification probability p(cj|x). In this case, p(xi|cj) will be positive even though the
available data does not include any instance with class cj and attribute Xi = xi. The
naïve Bayesian classifier can therefore work properly. The m-estimate approach ana-
lyzes the training data to set a positive value, not necessarily equal to one, for each
parameter αj in a Dirichlet prior.

3 Generalized Dirichlet and Liouville distributions

As pointed out in Sect. 2, there are some restrictions on the Dirichlet distribution. It
should be of interest to know whether the Dirichlet assumption has a severe impact on
the performance of the naïve Bayesian classifier. The Dirichlet distribution is a spe-
cial multivariate distribution generated from a truncated stick-breaking process that
recursively bipartitions a unit into positive fractions by using independent beta random
variables (Ishwaran and James 2001). Since the beta random variables employed in the
truncated stick-breaking process for a Dirichlet distribution are independent and in an
arbitrary order, Aitchison (1986) pointed out that the variables in a Dirichlet random
vector exhibit strong conditional independent relationships. However, the Dirichlet
distribution is still popular for analyzing compositional data because of its conjugate
property in Bayesian analysis and computational efficiency. In this section, we will
introduce two multivariate distributions that are not as restrictive as the Dirichlet distri-
bution in some aspects and can be generated from the truncated stick-breaking process.
In addition, they can also be appropriate priors for the naïve Bayesian classifier.

3.1 Generalized Dirichlet distributions

Definition 3 A random vector � = (θ1, θ2, . . . , θk) has a k-variate generalized
Dirichlet distribution with parameters αj > 0 and βj > 0 for j = 1, 2, . . . , k if it
has density

f(�) = k
�
j=1

�(αj + βj)

�(αj)�(βj)
θ

αj−1
j (1 − θ1 − · · · − θj)

λj
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for θ1 + θ2 +· · ·+ θk ≤ 1 and θj ≥ 0 for j = 1, 2, . . . , k, where λj = βj −αj+1 −βj+1
for j = 1, 2, . . . , k − 1 and λk = βk − 1. This distribution will be denoted GDk(α1,
α2, . . . , αk; β1, β2, . . . , βk).

For a random vector � = (θ1, θ2, . . . , θk), let Z1 = θ1 and Zj = θj/Vj−1 for
j = 2, 3, . . . , k, where Vj−1 = 1 − θ1 − · · · − θj−1. If the Zj are independent, then �

is completely neutral. Connor and Mosimann (1969) assumed that each of the Zj has
a beta distribution with parameters αj and βj, and derived the density function for the
generalized Dirichlet distribution as given in Definition 3. Wong (1998) used the con-
cept of complete neutrality to derive the general moment function for the generalized
Dirichlet distribution, as given in Lemma 4 below.

Lemma 4 (Wong 1998) Let � = (θ1, θ2, . . . , θk) be a vector random variable having
a k-variate generalized Dirichlet distribution GDk(α1, α2, . . . , αk; β1, β2, . . . , βk).
Then the general moment function of (θ1, θ2, . . . , θk) is

E(θ
r1
1 θ

r2
2 · · · θ rk

k ) = k
�
j=1

�(α j + β j )�(α j + r j )�(β j + δ j )

�(α j )�(β j )�(α j + β j + r j + δ j )

where δ j = r j+1 + r j+2 + · · · + rk for j = 1, 2, . . . , k − 1, and δk = 0.

By Lemma 4, we have

E(θj) = E

[
Zj

j−1
�
i=1

(1 − Zi)

]
= αj

αj + βj

j−1
�
i=1

βi

αi + βi
,

Var(θj) = αj(αj + 1)

(αj + βj)(αj + βj + 1)

j−1
�
i=1

βi(βi + 1)

(αi + βi)(αi + βi + 1)
− E(θj)

2

for j = 1, 2, . . ., k, and

E(θk+1) = E

[
k
�
i=1

(1 − Zi)

]
= k

�
i=1

βi

αi + βi
,

Var(θk+1) = k
�
i=1

βi(βi + 1)

(αi + βi)(αi + βi + 1)
− E(θk+1)

2.

Connor and Mosimann (1969) also showed that

Cov(θ1, θj) = − E(θj)

E(1 − θ1)
Var(θ1) for j = 2, 3, . . . , k + 1,

Cov(θj, θj+1) = E(Zj+1)E[Zj(1 − Zj)]
j−1
�
i=1

E[(1 − Zi)
2] − E(θj)E(θj+1)

for j = 2, 3, . . . , k − 1,

and

Cov(θj, θm) =
[

E(Zm)

E(Zj+1)

] [
m−1
�

i=j+1
E(1 − Zi)

]
Cov(θj, θj+1) for 1 < j < m < k.
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Thus, θ1 is always negatively correlated with all other random variables. However,
Lochner (1975) showed that Cov(θj, θm) can be positive for j, m > 1. If there exists
some m > j such that θj and θm are positively (negatively) correlated, then θj and θi
will be positively (negatively) correlated for all i > j.

When βj = αj+1 + βj+1 for j = 1, 2, . . . , k − 1, the generalized Dirichlet dis-
tribution GDk(α1, α2, . . . , αk; β1, β2, . . . , βk) reduces to the Dirichlet distribution
Dk(α1, α2, . . . , αk; βk). If (θ1, θ2, . . . , θk) has a generalized Dirichlet distribution,
then (θ1, θ2, . . . , θk) is completely neutral. However, this does not mean that every
permutation of (θ1, θ2, . . . , θk) is also completely neutral. For example, if (θ1, θ2, θ3)

follows GD3(α1, α2, α3; β1, β2, β3) and β1 �= α2 + β2, then (θ2, θ1, θ3) will not
have a generalized Dirichlet distribution. So, when (θ1, θ2, . . . , θk) has a generalized
Dirichlet distribution, the order of the θj is generally not arbitrary.

Theorem 2 A generalized Dirichlet distribution reduces to a Dirichlet distribution
if and only if all variables in the generalized Dirichlet random vector have the same
normalized variance.

Proof Suppose that (θ1, θ2, . . . , θk) follows the generalized Dirichlet distribution
GDk(α1, α2, . . . , αk; β1, β2, . . . , βk). If the generalized Dirichlet distribution reduces
to a Dirichlet distribution, then by Theorem 1, the θj have the same normalized vari-
ance. For the necessity of this theorem, we will show by induction that if the θj have
the same normalized variance, the parameters must satisfy βj = αj+1 +βj+1 for j = 1,
2, . . . , k − 1. Let Z1 = θ1 and Zj = θj/(1 − θ1 − · · · − θj−1) for j = 2, 3, . . . , k − 1.
Then the normalized variances of θ1 and θ2 are

NV(θ1) = NV(Z1) = 1

α1 + β1 + 1

and

NV(θ2) = Var(θ2)

E(X2)[1 − E(X2)] = E(Z2
2)E[(1 − Z1)

2] − E(Z2)
2E(1 − Z1)

2

E(Z2)E(1 − Z1)[1 − E(Z2)E(1 − Z1)]
= (α2 + 1)(β1 + 1)(α2+β2)(α1+β1) − α2β1(α2 + β2 + 1)(α1 + β1 + 1)

(α2 + β2 + 1)(α1 + β1 + 1)[(α2 + β2)(α1 + β1) − α2β1] .

By setting NV(θ1) = NV(θ2), we have β1 = α2 + β2.
Now, suppose that for some s < k, if the normalized variances of θ1 through θs−1

are the same, then βj = αj+1 + βj+1 for j = 1, 2, . . . , s − 2. The normalized variance
of θs is

NV(θs) = Var(θs)

E(θs)[1 − E(θs)] =
E(Z2

s )�
s−1
j=1 E[(1 − Zj)

2] −
[
E(Zs)�

s−1
j=1 E(1 − Zj)

]2

E(Zs)�
s−1
j=1 E(1 − Zj)

[
1 − E(Zs)�

s−1
j=1 E(1 − Zj)

] .
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Since βj = αj+1 + βj+1 for j = 1, 2, . . . , s − 2, we have

s−1
�
j=1

E[(1 − Zj)
2] = s−1

�
j=1

βj(βj + 1)

(αj + βj)(αj + βj + 1)
= βs−1(βs−1 + 1)

(α1 + β1)(α1 + β1 + 1)

and

s−1
�
j=1

E(1 − Zj) = s−1
�
j=1

βj

αj + βj
= βs−1

α1 + β1
.

Hence, the normalized variance of θs will be

NV(θs) =
E(Z2

s )�
s−1
j=1 E[(1 − Zj)

2] −
[
E(Zs)�

s−1
j=1 E(1 − Zj)

]2

E(Zs)�
s−1
j=1 E(1 − Zj)

[
1 − E(Zs)�

s−1
j=1 E(1 − Zj)

]

= (αs + 1)(βs−1 + 1)(αs + βs)(α1 + β1) − αsβs−1(αs+βs+1)(α1+β1+1)

(αs + βs + 1)(α1 + β1 + 1)[(αs + βs)(α1 + β1) − αsβs−1] .

By setting NV(θ1) = NV(θs), we have βs−1 = αs+βs. By induction, if the normalized
variances are all the same, then βj = αj+1 + βj+1 for j = 1, 2, . . . , k − 1. ��

Theorem 2 indicates that the generalized Dirichlet distribution is a suitable prior
for the variables with different confidence levels. It can be a prior for the variables
with the same confidence level only when it reduces to a Dirichlet distribution.

Lemma 5 (Wong 1998) When � = (θ1, θ2, . . . , θk) follows GDk(α1, α2, . . . , αk; β1,
β2, . . . , βk), and likelihood function L(y|�) follows a multinomial distribution, the
posterior density f(�|y) is GDk(α

′
1, α′

2, . . . , α
′
k; β ′

1, β ′
2, . . . , β

′
k), where α′

j = α j + y j

and β ′
j = β j + y j+1 + · · · + yk+1 for j = 1, 2, . . . , k.

Lemma 5 shows that the generalized Dirichlet distribution is also conjugate to the
multinomial sampling. When an attribute given class value cj is assumed to have a

generalized Dirichlet prior, the posterior mean E(θm|y) = α′
m

α′
m+β ′

m

m−1
�
i=1

α′
i

α′
i+β ′

i
is an

estimate of p(xi|cj) for calculating the classification probability p(cj|x). Thus, the
generalized Dirichlet distribution can be an appropriate prior for the naïve Bayesian
classifier.

3.2 Liouville distributions

Definition 4 A random vector � = (θ1, θ2, . . . , θk) has a k-variate Liouville dis-
tribution with parameters αj for j = 1, 2, . . . , k and density generator g(u) if it has
density

f(�) = C0g(u)
k
�
j=1

θ
αj−1
j
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for θ1 +θ2 +· · ·+θk ≤ 1 and θj ≥ 0 for j = 1, 2, . . . , k, where u = θ1 +θ2 +· · ·+θk
and C0 is a normalizing constant. This distribution will be denoted Lk(g(u); α1, α2,
…, αk).

Let (Z1, Z2, . . ., Zk−1) follow Dk−1(α1, α2, . . . , αk−1; αk), and let U defined on
[0,1] be an independent random variable with probability density function f(u). Set
Zk = 1 − Z1 − · · · − Zk−1 and Z = (Z1, Z2, . . ., Zk). Fang et al. (1990) showed
that � = UZ has a Liouville distribution Lk(g(u); α1, α2, …, αk), where g(u) ∝
u−(α−1)f(u) and α = α1 + α2 + · · · + αk. This result can be used to derive the general
moment function of the Liouville distribution, as given in Lemma 6 below.

Lemma 6 (Wong 2007) Let µr be the rth moment of U; i.e., µr = E(Ur ). If � has a
Liouville distribution Lk(g(u); α1, α2, . . . , αk), then the general moment function of
� is

E(θ
r1
1 θ

r2
2 · · · θrk

k ) = µr

�k
j=1�(α j + r j )�

(
�k

j=1α j

)

�k
j=1�(α j )�

(
�k

j=1α j + r
) ,

where r = r1 + r2 + · · · + rk .

When the density generating variate U has a beta distribution with parameters γ

and ω such that γ = α1 +α2 +· · ·+αk, by Lemma 6, we have g(u) ∝ (1−u)ω−1 and

E(θ
r1
1 θ

r2
2 · · · θ rk

k ) = �(γ + ω)�(γ + r)

�(γ + ω + r)�(γ )
·
�k

j=1�(αj + rj)�
(
�k

j=1αj

)

�k
j=1�(αj)�

(
�k

j=1αj + r
)

= �k
j=1�(α1 + r1)�(α1 + α2 + · · · + αk + ω)

�k
j=1�(αj)�(α1 + α2 + · · · + αk + ω + r)

which is the general moment function of the Dirichlet distribution Dk(α1, α2, . . . , αk;
ω). This means when the density generating variate U has a beta distribution with
parameters γ and ω, the Liouville distribution will reduce to a Dirichlet distribution
if γ = α1 + α2 + · · · + αk.

Let µ1 and µ2 be the first and second moments of U. Then by Lemma 6, we have

E(θj) = µ1
αj

α
,

Var(θj) = µ2
αj(αj + 1)

α(α + 1)
− µ2

1

α2
j

α2 ,

and

Cov(θi, θj)=
αiαj

α

(
µ2

α + 1
− µ2

1

α

)
for i �= j,

where α = α1 + α2 + · · · + αk. Since α, αi, and αj are all positive, we have
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Cov(θi, θj) = αiαj

α

(
µ2

α + 1
− µ2

1

α

)
> 0

⇒ σU/µ1 > 1/
√

α,

where σ 2
U = Var(U). Thus, for any i �= j, θi and θj will be positively correlated if

variable U has a coefficient of variation greater than 1/
√

α. Note that if there exist
i �= j such that θi and θj are positively (negatively) correlated, then θm and θq must be
positively (negatively) correlated for any m �= q.

Theorem 3 The Liouville distribution reduces to a Dirichlet distribution if and only
if all variables in the Liouville random vector have the same normalized variance and
the density generator variate U has a beta distribution.

Proof Suppose that the joint distribution of (θ1, θ2, . . . , θk) is the Liouville distri-
bution Lk(g(u); α1, α2, . . . , αk), and let α = α1 + α2 + · · · + αk. By Theorem 1,
when the Liouville distribution reduces to a Dirichlet distribution, the θj will have the
same normalized variance. Moreover, if distributions Dk(α1, α2, . . . , αk; αk+1) and
Lk(g(u); α1, α2, . . . , αk) are identical, by comparing their general moment functions,
the rth moment of U must be

E(Ur) = � (α + αk+1) � (α + r)

� (α + αk+1 + r) � (α)
,

which is the rth moment of a beta distribution with parameters α and αk+1. Since U
is defined on a compact support, U must have a beta distribution. For the necessity of
this theorem, suppose that U has a beta distribution with parameters γ and ω, and let
θk+1 = 1 − U. Then for any j < k + 1, since θj and θk+1 have the same normalized
variance, we have

NV(θj) = NV(θk+1) = Var(θk+1)

E(θk+1)[1 − E(θk+1)] = NV(U) = 1

γ + ω + 1

⇒ Var(θj)

E(θj)[1 − E(θj)] = E(U2)
αj(αj+1)

α(α+1)
− (αj

α

)2
E(U)2

αj
α

E(U)
[
1 − αj

α
E(U)

]

= α(γ + ω)(αj + 1)(γ + 1) − αjγ (α + 1)(γ + ω + 1)

(α + 1)(γ + ω + 1)[α(γ + ω) − αjγ ]
= 1

γ + ω + 1
⇒ (α − γ )(αj − α) = 0.

Since αj < α, we have α = γ . This means that the Liouville distribution reduces to a
Dirichlet distribution. ��

Note the fact that all variables having the same normalized variance is not enough to
ensure that the Liouville distribution will reduce to a Dirichlet distribution. However,
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if variables θ1 through θk have the same mean, they will have the same normalized
variance.

Lemma 7 (Wong 2007) When � = (θ1, θ2, . . . , θk) follows Lk(g(u); α1, α2, . . . , αk),
and L(y|�) follows a multinomial distribution, the posterior density f(�|y) is Lk(h(u);
α′

1, α′
2, . . . , α

′
k), where α′

j = α j + y j for j = 1, 2, . . . , k, and h(u) = g(u)(1−u)yk+1 .
In particular, when U has a beta distribution with parameters γ and ω, U |y will have
a beta distribution with parameters γ + y1 + y2 + · · · + yk and ω + yk+1.

In a naïve Bayesian classifier, when an attribute given class value cj has a Liou-

ville prior, the estimate of p(xi|cj) is the posterior mean E(θm|y) = E(U|y)
α′

m
α′ , where

α′ = α′
1 + α′

2 + · · · + α′
k. Thus, the Liouville distribution can also be a prior for naïve

Bayesian classifiers.

4 Prior construction

Both the generalized Dirichlet and the Liouville distributions include the Dirichlet
distribution as a special case, and they can overcome some restrictions of the Dirichlet
distribution. We can use them to replace Dirichlet distributions as priors to investi-
gate the impact of the Dirichlet assumption. In this section, we will introduce how to
construct either a generalized Dirichlet prior or a Liouville prior for naïve Bayesian
classifiers.

The main restrictions of the Dirichlet distribution are the negative-correlation and
the equal-confidence requirements. Note that there are two implications about the
Laplace’s estimate αj = 1 for all j in a Dirichlet prior. The first one is that all variables
will have the same prior mean, which means it is a noninformative prior. The Laplace’s
estimate also implies that the confidence levels about the mean values of the variables
are low. To contrast the Dirichlet priors with the Laplace’s estimate, we will explore
two types of generalized Dirichlet and Liouville priors. The first type will satisfy the
two implications of the Laplace’s estimate: noninformative and unconfident. For
the sake of ease of use, the noninformative implication should not be violated. Thus,
the second type of generalized Dirichlet and Liouville priors will be allowed to show
a high confidence level about some estimates. Note that noninformative generalized
Dirichlet priors can release both requirements of the Dirichlet prior, while nonin-
formative Liouville priors can release only the negative-correlation requirement. In
particular, the variables in a Liouville random vector are either all positively or all
negatively correlated.

4.1 Noninformative and unconfident priors

The variables in either a univariate or a bivariate generalized Dirichlet random vector
cannot be positively correlated. Thus, an attribute with two or three possible outcomes
will be assumed to have a Dirichlet prior. Only attributes with more than three possible
outcomes will be set to have a generalized Dirichlet or Liouville prior. The number of
parameters in a k-variate generalized Dirichlet distribution is 2k. When all mean values
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must be considered in constructing a generalized Dirichlet distribution, the remaining
degrees of freedom that can be used to adjust the spread of the distribution is k. If the
mean values are all equal, we will have E(θj) = 1/(k + 1) for j = 1, 2, . . ., k + 1, or
equivalently αj/βj = αj+1/(αj+1 + βj+1) for j = 1, 2, . . ., k − 1. When Cov(θ2, θ3)

is positive, we have

Cov(θ2, θ3) = E(θ2θ3) − E(θ2)E(θ3) > 0 ⇒ α1

β1
>

α1 + β1 + 1

α2 + β2
.

Note that the Dirichlet distribution Dk(1, 1, . . ., 1; 1) is equivalent to the generalized
Dirichlet distribution GDk(1, 1, . . ., 1; k, k−1, . . ., 1). If we set α1 = 1 and β1 = k for a
generalized Dirichlet prior, then Cov(θ2, θ3) will be positive when α2 +β2 > k(k+2).
The value of α2 + β2 will be large if k is large, and the posterior mean of a variable
with an index larger than one is no longer primarily determined by the training data.

All variables in a Dirichlet random vector have the same normalized variance, or
equivalently the same confidence level. Since we also want to know the impact of
the variables’ confidence levels on the performance of naïve Bayesian classifiers, the
variables following a generalized Dirichlet distribution will be divided into two sets
{θ1, θ2} and {θ3, θ4, . . ., θk+1} such that the variables in the second set will have the
same confidence level. This results in βj = αj+1 + βj+1 for j = 3, 4, . . ., k. Following
from the above, an attribute with k + 1 possible outcomes will be assumed to have a
generalized Dirichlet prior GDk(α1, α2, . . ., αk; β1, β2, . . ., βk) in one of the following
three groups:

1. Generalized Dirichlet group 1 (GDG1): Prior Gm with parameters α1 = 0.01,
αj = 1 for j = 3, 4, . . ., k, β1 = k/100, βj = k − j + 1 for j = 3, 4, . . ., k, and
α2 = 0.1 × (m + 5) and β2 = α2 × (k − 1) for m = 1, 2, . . ., 10.

2. Generalized Dirichlet group 2 (GDG2): Prior Gm with parameters α1 = 0.01,
αj = 1.25 for j = 3, 4, . . ., k, β1 = k/100, βj = 1.25 × (k − j + 1) for j =
3, 4, . . ., k, and α2 = 0.1×(m−5) and β2 = α2 ×(k−1) for m = 11, 12, . . ., 20.

3. Generalized Dirichlet group 3 (GDG3): Prior Gm with parameters α1 = 0.01,
αj = 2 for j = 3, 4, . . ., k, β1 = k/100, βj = 2 × (k − j + 1) for j = 3, 4, . . ., k,
and α2 = 0.1 × (m − 15) and β2 = α2 × (k − 1) for m = 21, 22, . . ., 30.

The values of k and m in prior Gm can be used to derive its covariance matrix. In each
prior, since α2/β2 = 1/(k − 1) and βj = αj+1 + βj+1 for j = 3, 4, . . ., k, variables θ3
through θk have the same normalized variance. Note also that Cov(θj, θj+1) for j ≥ 3
are identical.

Tables 1 through 3 show the values of NV(θ2), NV(θ3), Cov(θ2, θ3), and Cov(θ3, θ4)

for the 9-variate generalized Dirichlet priors of these three groups, respectively. The
value of Cov(θ2, θ3) is gradually changed from negative to positive in each group. This
design could help us to know whether the correlations among variables will affect the
classification accuracy. The values of NV(θ2) and Cov(θ2, θ3) in the original Dirichlet
prior Dk(1, 1, . . ., 1; 1) for k = 9 are 0.090909 and −0.000909, respectively. Note
that the values of NV(θ3) for the priors in GDG1 are all larger than 0.090909, and that
the values of NV(θ3) for the priors in GDG3 are all smaller than 0.090909. In GDG2,
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Table 1 The values of NV(θ2), NV(θ3), Cov(θ2, θ3), and Cov(θ3, θ4) for GD9(0.01, α2, 1, 1, . . ., 1; 0.09,
β2, 7, 6, . . ., 1) with various values of α2 and β2

α2 β2 NV(θ2) NV(θ3) Cov(θ2, θ3) Cov(θ3, θ4)

G1 0.6 4.8 0.164141 0.110620 −0.000710 −0.000022
G2 0.7 5.6 0.145289 0.110096 −0.000498 −0.000046
G3 0.8 6.4 0.130574 0.109688 −0.000333 −0.000064
G4 0.9 7.2 0.118770 0.109360 −0.000200 −0.000079
G5 1.0 8.0 0.109091 0.109091 −0.000091 −0.000091
G6 1.1 8.8 0.101010 0.108866 0.000000 −0.000101
G7 1.2 9.6 0.094162 0.108676 0.000077 −0.000110
G8 1.3 10.4 0.088284 0.108513 0.000143 −0.000117
G9 1.4 11.2 0.083185 0.108371 0.000201 −0.000123
G10 1.5 12.0 0.078718 0.108247 0.000251 −0.000129

Table 2 The values of NV(θ2), NV(θ3), Cov(θ2, θ3), and Cov(θ3, θ4) for GD9(0.01, α2, 1.25, 1.25, . . .,

1.25; 0.09, β2, 8.75, 7.50, . . ., 1.25) with various values of α2 and β2

α2 β2 NV(θ2) NV(θ3) Cov(θ2, θ3) Cov(θ3, θ4)

G11 0.6 4.8 0.164141 0.092982 −0.000710 0.000205
G12 0.7 5.6 0.145289 0.092500 −0.000498 0.000181
G13 0.8 6.4 0.130574 0.092124 −0.000333 0.000162
G14 0.9 7.2 0.118770 0.091822 −0.000200 0.000147
G15 1.0 8.0 0.109091 0.091575 −0.000091 0.000134
G16 1.1 8.8 0.101010 0.091368 0.000000 0.000124
G17 1.2 9.6 0.094162 0.091193 0.000077 0.000115
G18 1.3 10.4 0.088284 0.091043 0.000143 0.000108
G19 1.4 11.2 0.083185 0.090912 0.000201 0.000101
G20 1.5 12.0 0.078718 0.090798 0.000251 0.000095

Table 3 The values of NV(θ2), NV(θ3), Cov(θ2, θ3), and Cov(θ3, θ4) for GD9(0.01, α2, 2, 2, . . ., 2; 0.09,
β2, 14, 12, . . ., 2) with various values of α2 and β2

α2 β2 NV(θ2) NV(θ3) Cov(θ2, θ3) Cov(θ3, θ4)

G21 0.6 4.8 0.164141 0.064970 −0.000710 0.000565
G22 0.7 5.6 0.145289 0.064554 −0.000498 0.000540
G23 0.8 6.4 0.130574 0.064229 −0.000333 0.000520
G24 0.9 7.2 0.118770 0.063969 −0.000200 0.000505
G25 1.0 8.0 0.109091 0.063755 −0.000091 0.000492
G26 1.1 8.8 0.101010 0.063577 0.000000 0.000481
G27 1.2 9.6 0.094162 0.063426 0.000077 0.000472
G28 1.3 10.4 0.088284 0.063296 0.000143 0.000464
G29 1.4 11.2 0.083185 0.063184 0.000201 0.000458
G30 1.5 12.0 0.078718 0.063085 0.000251 0.000452

the values of NV(θ3) are different but all close to 0.090909. This setting could reveal
whether the value of the normalized variance does have an impact on the classification
accuracy.

As introduced in Sect. 3.2, a Liouville random vector is composed by multiplying
a Dirichlet random vector by an independent density generating variate U defined on
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[0,1]. For the sake of computational efficiency, assume that U has a beta distribution
with parameters γ and ω. As pointed out in Sect. 3.2, the variables with the same
mean in a Liouville random vector will have the same normalized variance. So, let
the Dirichlet distribution used to generate a noninformative and unconfident Liouville
prior for an attribute with k+1 possible outcomes be Dk−1(d, d, . . ., d; d) for some
positive constant d, and let E(U) = k/(k + 1) = γ /(γ + ω). When two variables θi
and θj in the Liouville prior are positively correlated, we will have

α >
E(U)2

Var(U)
= γ (γ + ω + 1)

ω
⇒ d > γ + ω + 1,

where α is the sum of the parameters in the Dirichlet distribution for generating the
Liouville distribution. Since both γ and ω are positive, the variables following a
Liouville distribution cannot be positively correlated when d ≤ 1.

When the density generating variate U has a beta distribution with parameters γ

and ω, a k-variate noninformative Liouville prior for k > 2 is assumed to be in one of
the following three groups:

1. Liouville group 1 (LG1): Prior Lm with parameters ω = 0.001 × m, γ = k × ω,
and d = 1.05 for m = 1, 2, . . ., 10.

2. Liouville group 2 (LG2): Prior Lm with parameters ω = 0.005 × (m − 10),
γ = k × ω, and d = 1.25 for m = 11, 12, . . ., 20.

3. Liouville group 3 (LG3): Prior Lm with parameters ω = 0.02 × (m − 20),
γ = k × ω, and d = 2 for m = 21, 22, . . ., 30.

Similarly, the values of k and m in prior Lm can be used to derive its covariance
matrix. Tables 4 through 6 show the values of NV(θ1) and Cov(θ1, θ2) for the
9-variate Liouville priors with various values of γ and ω. Similar to constructing
the noninformative and unconfident generalized Dirichlet priors, Cov(θ1, θ2) is grad-
ually changed from positive to negative as γ + ω is getting larger in each Liouville
group. We also make the normalized variances for the priors in LG1, LG2, and LG3
be larger than, approximately equal to, and smaller than 0.090909.

Table 4 The values of NV(θ1) and Cov(θ1, θ2) for the Liouville priors L9(g(u); 1.05, 1.05, . . ., 1.05) with
various values of γ and ω

γ ω NV(θ1) Cov(θ1, θ2)

L1 0.009 0.001 0.106642 0.000038
L2 0.018 0.002 0.106431 0.000028
L3 0.027 0.003 0.106223 0.000019
L4 0.036 0.004 0.106020 0.000009
L5 0.045 0.005 0.105820 0.000000
L6 0.054 0.006 0.105624 −0.000009
L7 0.063 0.007 0.105432 −0.000018
L8 0.072 0.008 0.105243 −0.000027
L9 0.081 0.009 0.105080 −0.000035
L10 0.090 0.010 0.104877 −0.000043
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Table 5 The values of NV(θ1) and Cov(θ1, θ2) for the Liouville priors L9(g(u); 1.25, 1.25, . . ., 1.25) with
various values of γ and ω

γ ω NV(θ1) Cov(θ1, θ2)

L11 0.045 0.005 0.091999 0.000155
L12 0.090 0.010 0.091115 0.000111
L13 0.135 0.015 0.090309 0.000071
L14 0.180 0.020 0.089569 0.000034
L15 0.225 0.025 0.088889 0.000000
L16 0.270 0.030 0.088261 −0.000031
L17 0.315 0.035 0.087680 −0.000060
L18 0.360 0.040 0.087140 −0.000087
L19 0.405 0.045 0.086637 −0.000113
L20 0.450 0.050 0.086168 −0.000136

Table 6 The values of NV(θ1) and Cov(θ1, θ2) for the Liouville priors L9(g(u); 2, 2, . . ., 2) with various
values of γ and ω

γ ω NV(θ1) Cov(θ1, θ2)

L21 0.18 0.02 0.061404 0.000351
L22 0.36 0.04 0.059315 0.000226
L23 0.54 0.06 0.057749 0.000132
L24 0.72 0.08 0.056530 0.000058
L25 0.90 0.10 0.055556 0.000000
L26 1.08 0.12 0.054758 −0.000048
L27 1.26 0.14 0.054094 −0.000088
L28 1.44 0.16 0.053531 −0.000121
L29 1.62 0.18 0.053049 −0.000150
L30 1.80 0.20 0.052632 −0.000175

4.2 Noninformative priors

In a Dirichlet prior, the sum of its parameters represents the total confidence level
about this prior. For example, person A with noninformative prior D4(1, 1, 1, 1; 1) is
less confident than person B with noninformative prior D4(20, 20, 20, 20; 20), because
the variables in the former prior have a larger normalized variance. When � = (θ1,
θ2, . . . , θk) follows Dk(α1, α2, . . . , αk; αk+1), and L(y|�) follows a multinomial
distribution, by Lemma 3, we have

E(θj|y) = αj + yj

α + n
= α

α + n
· αj

α
+ n

α + n
· yj

n
= α

α + n
E(θj) + n

α + n
· yj

n
,

where α = α1 + α2 + · · · + αk and n = y1 + y2 + · · · + yk+1. This expression means
the posterior mean E(θj|y) is the sum of the prior mean E(θj) multiplied by the prior
weight α/(α + n) and the data mean yj/n multiplied by the data weight n/(α + n).
So, the value of α represents the equivalent sample size for composing the Dirichlet
prior. We will gradually increase the value of αj from 1 to M with stepsize 1 to search
for the best noninformative Dirichlet prior that has the highest classification accuracy.
This means that for an attribute with k + 1 possible outcomes, the largest equivalent
sample size for its noninformative Dirichlet priors will be kM.
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The parameters in a generalized Dirichlet prior can also be used to adjust its confi-
dence level. When a generalized Dirichlet prior is noninformative, all variables must
have the same mean. So, an attribute with k+1 possible outcomes will be assumed
to have a generalized Dirichlet prior GDk(α1, α2, . . ., αk; β1, β2, . . ., βk) in which
βj = (k− j+1)×αj for j = 1, 2, . . ., k. When all variables have the same mean, a var-
iable with a smaller variance will have a smaller normalized variance. Thus, when all
parameters in a noninformative generalized Dirichlet prior remain unchanged except
for αj and βj, a larger αj + βj indicates that the confidence level about the estimate of
E(θj) is higher.

In a generalized Dirichlet prior, every αj can be increased independently from 1
to M with stepsize 1 to search for the best generalized Dirichlet prior. In this case,
we will need to test Mk noninformative generalized Dirichlet priors to find the one
with the highest classification accuracy. This can be tractable only when both M and
k are small. For instance, when M = 50 and k = 9, Mk = 509 ≈ 1.95 × 1015. Note
that Var(θm) is independent of parameters αj and βj for all j > m. The procedure
to find the best noninformative generalized Dirichlet prior was therefore designed as
follows. The initial noninformative generalized Dirichlet prior will be GDk(1, 1, . . . ,
1; k, k − 1, . . . , 1), which is equivalent to Dk(1, 1, . . . , 1; 1). Then the value of α1 is
gradually increased from 1 to M with stepsize 1 to search for the value of α1, say α∗

1 ,
that achieves the highest classification accuracy. We then fixed α1 = α∗

1 and β1 = kα∗
1

and gradually increased α2 from 1 to M with stepsize 1 to find the value of α2 that
achieves the highest classification accuracy, and so on. The number of noninformative
generalized Dirichlet priors considered in this procedure will be kM instead of Mk.

Since attributes can have different numbers of possible outcomes, we adopted the
justifying-right policy to set the values of the parameters in their noninformative gen-
eralized Dirichlet priors. That is, when attributes A and B have k and m possible
outcomes, respectively, and m < k, the value of parameter αj in the noninformative
generalized Dirichlet prior for attribute B is equal to the value of parameter αk−m+j
in the noninformative generalized Dirichlet prior for attribute A. For example, if the
numbers of possible outcomes of attributes A and B are 10 and 5, respectively, the
value of αj for attribute B is always equal to the value of α5+j for attribute A in search-
ing for the best noninformative generalized Dirichlet prior. Thus, in determining the
values of α∗

1 through α∗
5 for attribute A, the prior for attribute B remains GD4(1, 1, 1,

1; 4, 3, 2, 1), or equivalently D4(1, 1, 1, 1; 1).
In constructing a noninformative Liouville prior, let the Dirichlet distribution and

the distribution for the density generating variate U be Dk−1(d, d, . . ., d; d) and beta(γ ,
ω), respectively. Since this Liouville prior is noninformative, we must have γ = kω

to ensure that the k+1 possible outcomes have the same mean probability. The param-
eters that can be used to adjust its confidence level are d and ω. When the values
of d and ω get larger, the confidence level about the Liouville prior becomes higher.
Thus, we will gradually and independently increase the values of d and ω from 1 to
M with stepsize 1 to search for the best noninformative Liouville prior. In this way,
the number of noninformative Liouville priors that will be tested is M2. As discussed
before, when d > γ +ω+1 = (k+1)ω+1, the variables in the Liouville distribution
will be all positively correlated. If M is not too small, the variables in some of the M2

noninformative Liouville priors will be positively correlated.
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As presented in Sect. 3.2, when U has a beta distribution with parameters γ = kd
and ω = d, the Liouville distribution will reduce to the Dirichlet distribution Dk(d,
d, . . ., d; d). This means the M Dirichlet priors for searching the best noninformative
Dirichlet prior will also be tested in searching for the best noninformative Liouville
prior. This guarantees that the classification accuracy resulting from the best nonin-
formative Liouville prior will not be smaller than the classification accuracy resulting
from the best noninformative Dirichlet prior. However, except for the Dirichlet prior
with the Laplace’s estimate, the procedure for searching the best noninformative gen-
eralized Dirichlet prior will generally test none of the other M − 1 noninformative
Dirichlet priors.

When the value of M is large with respect to the size of the training data, the prior
will dominate the classification results. Since the priors are noninformative, too large a
value of M should deteriorate the classification accuracy. We therefore set M to be 60,
which is equivalent to a sample with 540 instances when an attribute has 10 possible
outcomes.

5 Experimental results

We chose 18 data sets, as shown in Table 7, from the UCI machine learning reposi-
tory (Blake and Merz 1998) to study the impact of the Dirichlet assumption in naïve
Bayesian classifiers. In general, there are two ways to handle continuous attributes for
the naïve Bayesian classifier: discretize the attributes or estimate normal distributions
for them. Empirical studies (Dougherty et al. 1995; Kohavi and Sahami 1996) have
shown that the discretizing approach can perform similar to or better than the other
approach. As addressed by Hsu et al. (2003) for naïve Bayesian classifiers, different
discretization methods used on continuous attributes will achieve similar classifica-
tion accuracies. We therefore employed the ten-bin discretization method to discret-
ize continuous attributes; i.e., the range of a continuous attribute was divided into
ten equal-width intervals. Missing values were ignored in calculating classification
probabilities. Stratified five-fold cross validation was the method used for evaluating
classification accuracy.

The order of the variables in a Dirichlet random vector is arbitrary. When an attri-
bute has a k-variate Liouville prior that does not reduce to a Dirichlet distribution, only
the position of the variable corresponding to possible outcome k+1 of the attribute
cannot be changed arbitrarily. However, in a generalized Dirichlet random vector, two
consecutive variables θj and θj+1 can be interchanged only when βj = αj+1 + βj+1.
Thus, when an attribute has a generalized Dirichlet prior, the way to assign the order
of its possible outcomes is as follows. The possible outcomes of a discretized contin-
uous attribute or a discrete attribute measured by an ordinal scale will be sorted in an
ascending order. When an attribute in a data set is nominal, the order of its possible
outcomes will be the same as the order they appeared in the description document for
the data set.

There are two types of generalized Dirichlet and Liouville priors that will be tested
on the 18 data sets. One is similar to the Dirichlet prior with the Laplace’s estimate:
noninformative and unconfident, and another is allowed to show high confidence levels
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Table 7 The characteristics of testing data sets

Data set No. of instances No. of attributes No. of classes

Australian 690 14 2
Balance-scale 625 4 3
Breast-w 699 9 2
Cleve 303 13 2
Ecoli 336 8 8
Glass 214 10 7
Haberman 306 3 2
Heart 270 13 2
Hepatitis 155 19 2
Iris 150 4 3
Liver 345 6 2
New-thyroid 215 5 3
Pima 768 8 2
Segment 2310 19 7
Tae 151 5 3
Vehicle 946 18 4
Wine 178 13 3
Yeast 1484 8 10

about estimates. In this section, we will present the experimental results of these two
types of priors. The noninformative generalized Dirichlet distribution can release both
the negative-correlation and the equal-confidence requirements, and the noninforma-
tive Liouville distribution allows variables to be either all positively or all negatively
correlated. They are different extensions of the Dirichlet distribution. Thus, the exper-
imental results can provide the necessary information for us to study the impact of the
Dirichlet assumption in naïve Bayesian classifiers.

5.1 Noninformative and unconfident priors

The parameters in the noninformative and unconfident generalized Dirichlet and Liou-
ville priors constructed in Sect. 4.1 are all between 0.01 and 2. So, we first set the
value of αj in the noninformative Dirichlet prior to be various values in this range to
identify its impact on the performance of the naïve Bayesian classifier. The testing
results for αj = 0.01, 0.5, 1, 1.5, and 2 are shown in Table 8. The last row of Table 8
shows the p-values of the paired-t tests for the other four settings of αj with respect
to the Laplace’s estimate. Since the p-values are all larger than 0.05, we adopted the
classification accuracy obtained from the Dirichlet prior with the Laplace’s estimate
to be the baseline for evaluating the impact of the noninformative and unconfident
generalized Dirichlet and Liouville priors.

As described in Sect. 4.1, an attribute with either two or three possible outcomes
will be assumed to have a Dirichlet prior for evaluating the estimate of p(xi|cj). For
any attribute with k+1 > 3 possible outcomes, its generalized Dirichlet and Liouville
priors will be one of G1 through G30 and one of L1 through L30, respectively. The
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Table 8 The testing results of various noninformative and unconfident Dirichlet priors

Data set αj = 0.01 αj = 0.5 αj = 1 αj = 1.5 αj = 2

Australian 83.85 84.34 84.19 84.32 84.62
Balance-scale 90.79 90.58 90.58 90.58 90.58
Breast-w 97.43 97.45 97.45 97.45 97.31
Cleve 82.39 83.35 83.00 83.00 83.31
Ecoli 82.09 83.72 82.50 81.30 79.69
Glass 60.98 59.21 59.35 60.10 57.66
Haberman 75.23 75.88 75.54 75.50 74.78
Heart 81.77 83.59 84.21 83.86 83.86
Hepatitis 88.01 86.21 86.21 86.21 86.21
Iris 93.81 93.81 93.19 92.56 92.56
Liver 61.52 62.71 63.27 63.60 63.28
New-thyroid 94.13 93.21 91.86 91.86 91.42
Pima 75.34 75.44 76.01 76.22 76.04
Segment 90.43 89.56 88.93 88.11 87.69
Tae 53.18 53.31 52.63 53.28 52.63
Vehicle 61.96 61.78 61.82 61.76 61.51
Wine 95.65 96.70 96.14 96.70 97.18
Yeast 58.13 57.97 57.58 57.60 57.47

p-value 0.6672 0.0824 0.8345 0.0860

classification results for these generalized Dirichlet and Liouville priors are summa-
rized in the 18 line charts in Fig. 1.

In each line chart, the baseline is the classification accuracy of the Dirichlet prior
with the Laplace’s estimate, and the horizontal axis represents the generalized Dirichlet
and the Liouville priors for the naïve Bayesian classifier. For instance, the horizon-
tal label 10 means the generalized Dirichlet and the Liouville priors for the naïve
Bayesian classifier are G10 and L10, respectively. From the 18 charts, we can see that
most values in the line curves corresponding to the noninformative and unconfident
generalized Dirichlet priors are above or on the baselines, while most values in the
line curves corresponding to the noninformative and unconfident Liouville priors are
below the baselines. This phenomenon suggests that the generalized Dirichlet prior
can often achieve a better or equal accuracy, and that the accuracy for the Liouville
prior is usually worse. This also implies that among the three possible prior families
for the naïve Bayesian classifier, the generalized Dirichlet distribution should be the
best choice. However, the differences between their resulting accuracies are small,
because the priors are all noninformative and unconfident.

Tables 9 and 10 summarize the best and the worst mean accuracies resulting from
the generalized Dirichlet and the Liouville prior groups for various data sets, where
“+” (“−”) indicates that a mean accuracy is larger (smaller) than the mean accuracy
resulting from the corresponding Dirichlet prior. The 2-tuples in the last row of both
tables show the numbers of plus and minus signs in each column. The first two of the
three generalized Dirichlet prior groups, even the worst case, have larger values for the
plus sign. On the other hand, in the three Liouville prior groups, every value for the plus
sign is smaller than the corresponding value for the minus sign. This again suggests
that the generalized Dirichlet prior is the best among the three prior families. Note
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Fig. 1 The testing results for various noninformative and unconfident generalized Dirichlet and Liouville
priors specified in Sect. 4.1

123



T.-T. Wong

83.2
83.4
83.6
83.8

84
84.2
84.4

3020100

Dirichlet Generalized Dirichlet Liouville(h) heart 

82

83

84

85

86

87

3020100

Dirichlet Generalized Dirichlet Liouville

92

92.4

92.8

93.2

93.6

3020100

Dirichlet Generalized Dirichlet Liouville

62
62.5

63
63.5

64
64.5

65

3020100

Dirichlet Generalized Dirichlet Liouville

89.6

91.2

92.8

3020100

Dirichlet Generalized Dirichlet Liouville

(i) hepatitis 

(k) liver 

(j) iris 

(l) new-thyroid 

75.6
75.8

76
76.2
76.4
76.6
76.8

3020100

Dirichlet Generalized Dirichlet Liouville(m) pima 

Fig. 1 continued

123



Performance of naïve Bayesian classifiers

48
49
50
51
52
53
54

3020100

Dirichlet Generalized Dirichlet Liouville

60.8
61

61.2
61.4
61.6
61.8

62
62.2

3020100

Dirichlet Generalized Dirichlet Liouville(p) vehicle 

(o) tae 

86.5
87

87.5
88

88.5
89

89.5

3020100

Dirichlet Generalized Dirichlet Liouville(n) segment 

95
95.5

96
96.5

97
97.5

98

3020100

Dirichlet Generalized Dirichlet Liouville

57

57.5

58

58.5

3020100

Dirichlet Generalized Dirichlet Liouville

(q) wine 

(r) yeast 

Fig. 1 continued

also that the values for the minus sign in the best or worst columns gradually increase
for the three groups in both tables. The priors in GDG3 have the smallest normalized
variances among the three generalized Dirichlet prior groups, and similarly for LG3.
One reason for this phenomenon could be when priors are noninformative and uncon-
fident, smaller normalized variances will make the values for parameters larger. When
the number of instances in a data set is small, such as the data sets “ecoli”, “heart”, and
“tae”, improper and larger values for parameters may cause some misclassifications
that greatly reduce its classification accuracy.
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Table 9 The best and the worst mean accuracies resulting from the generalized Dirichlet priors

Data set Dirichlet GDG1 GDG2 GDG3

Best Worst Best Worst Best Worst

Australian 84.19 84.68+ 84.55+ 84.81+ 84.68+ 84.95+ 84.80+
Balance-scale 90.58 90.79+ 90.65+ 90.79+ 90.65+ 90.50− 90.50−
Breast-w 97.45 97.45 97.45 97.45 97.45 97.33− 97.33−
Cleve 83.00 83.59+ 83.59+ 84.05+ 84.05+ 84.05+ 84.05+
Ecoli 82.50 82.56+ 82.56+ 82.26− 82.26− 81.37− 81.05−
Glass 59.35 60.67+ 59.61+ 60.18+ 59.75+ 59.38+ 58.36−
Haberman 75.54 75.58+ 75.23− 75.23− 74.89− 75.23− 74.89−
Heart 84.21 83.59− 83.59− 83.90− 83.90− 83.90− 83.90−
Hepatitis 86.21 86.21 86.21 86.21 86.21 85.59− 84.79−
Iris 93.19 93.19 93.19 93.19 93.19 92.56− 92.56−
Liver 63.27 64.55+ 63.90+ 64.82+ 63.97+ 64.64+ 63.97+
New-thyroid 91.86 92.23+ 92.23+ 92.23+ 92.23+ 91.86 91.86
Pima 76.01 76.16+ 75.93− 76.29+ 76.18+ 76.59+ 76.43+
Segment 88.93 89.12+ 89.03+ 88.89− 88.81− 88.17− 88.03−
Tae 52.63 52.63 52.01− 53.17+ 51.89− 51.07− 50.35−
Vehicle 61.82 61.90+ 61.78− 62.01+ 61.54− 61.85+ 61.54−
Wine 96.14 96.99+ 96.43+ 97.48+ 96.51+ 97.48+ 97.00+
Yeast 57.58 57.96+ 57.81+ 57.96+ 57.69+ 57.98+ 57.85+
No. of data sets (13, 1) (10, 5) (11, 4) (9, 6) (8, 9) (6, 11)

Table 10 The best and the worst mean accuracies resulting from the Liouville priors

Data set Dirichlet LG1 LG2 LG3

Best Worst Best Worst Best Worst

Australian 84.19 83.92− 83.74− 84.06− 83.74− 84.47+ 84.20+
Balance-scale 90.58 90.41− 90.41− 90.58 90.58 90.58 90.58
Breast-w 97.45 97.43− 97.43− 97.29− 97.16− 97.19− 97.04−
Cleve 83.00 83.15+ 83.15+ 82.82− 82.51− 82.40− 82.40−
Ecoli 82.50 83.06+ 83.06+ 82.78+ 82.47− 80.85− 80.29−
Glass 59.35 59.20− 58.67− 59.20− 59.20− 56.80− 56.80−
Haberman 75.54 75.54 75.54 75.54 75.54 75.09− 75.09−
Heart 84.21 83.55− 83.55− 83.55− 83.55− 83.90− 83.90−
Hepatitis 86.21 83.47− 83.47− 84.10− 84.10− 84.10− 84.10−
Iris 93.19 93.19 93.19 92.56− 92.56− 93.21+ 93.21+
Liver 63.27 63.21− 62.94− 63.27 63.27 63.59+ 63.27
New-thyroid 91.86 91.86 91.86 91.86 91.86 91.42− 91.42−
Pima 76.01 75.99− 75.99− 75.99− 75.99− 76.52+ 76.36+
Segment 88.93 88.88− 88.80− 88.53− 88.45− 87.51− 87.51−
Tae 52.63 52.63 52.63 53.28+ 53.28+ 50.55− 50.55−
Vehicle 61.82 61.89+ 61.89+ 61.75− 61.54− 61.44− 61.30−
Wine 96.14 97.18+ 96.70+ 96.70+ 96.70+ 96.70+ 96.70+
Yeast 57.58 57.90+ 57.83+ 57.97+ 57.90+ 58.00+ 57.80+
No. of data sets (5, 9) (5, 9) (4, 10) (3, 11) (6, 11) (5, 11)
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Table 11 The percentage of instances classified differently by the naïve Bayesian classifiers with nonin-
formative and unconfident generalized Dirichlet and Liouville priors

Data set (No. of instances) GDG1 % GDG2 % GDG3 % LG1 % LG2 % LG3 %

Australian (690) 0.70 0.83 0.86 0.36 0.28 0.39
Balance-scale (625) 0.59 0.61 0.80 0.16 0.32 0.32
Breast-w (699) 0.14 0.14 0.14 0.29 0.31 0.36
Cleve (303) 0.40 0.99 0.99 0.99 1.55 2.31
Ecoli (336) 0.89 0.86 3.27 1.19 1.28 3.81
Glass (214) 8.32 8.55 9.67 3.69 1.87 6.78
Haberman (306) 0.65 1.01 1.47 0.33 0.33 0.98
Heart (270) 0.74 0.37 0.37 0.74 0.74 1.11
Hepatitis (155) 0.65 0.65 1.10 5.16 4.52 4.52
Iris (150) 0 0 0.47 0 0.67 1.33
Liver (345) 2.96 3.07 4.29 0.81 1.16 3.01
New-thyroid (215) 0.93 0.93 0.47 0.47 0.47 0.47
Pima (768) 0.98 0.79 1.16 0.52 0.26 1.54
Segment (2,310) 1.03 1.31 2.33 0.23 0.53 1.65
Tae (151) 1.32 2.19 7.75 0.66 1.32 7.28
Vehicle (946) 0.58 0.94 1.34 0.39 0.30 0.88
Wine (178) 1.97 2.58 2.53 0.67 0.56 0.56
Yeast (1,484) 1.31 1.03 1.54 0.62 0.58 1.72

Average 1.34 1.51 2.25 0.96 0.95 2.17

According to the above analysis of the 18 data sets, when noninformative and
unconfident priors are of the same family, the settings on the normalized variances of
variables and the correlations among variables have a slight impact on the accuracy of
the naïve Bayesian classifier. However, the performance of the generalized Dirichlet
distribution is the best among the three distribution families, and the performance of
the Liouville distribution is the worst.

We summarize the percentage of instances classified differently by the naïve Bayes-
ian classifiers with noninformative and unconfident generalized Dirichlet and Liou-
ville priors with respect to the naïve Bayesian classifiers that have Dirichlet priors
with the Laplace’s estimate in Table 11. On average, there are at most 2.3 percent of
the instances that are predicted differently. The data set “glass” has only 214 instances
and low classification accuracy, and the number of classes in this data set is 7. Thus,
different priors have a relatively large impact on the accuracy of this data set.

5.2 Noninformative priors

In searching for the best noninformative Dirichlet prior, the value of αj is gradually
increased from 1 to 60 with stepsize 1. When a data set has continuous attributes, after
the process of the ten-bin discretization, the equivalent sample size corresponding to
a discretized continuous attribute can be as large as 540. The 18 data sets all have
continuous attributes, except the data set “balance-scale”. An attribute in the data set
“tae” has 26 possible outcomes, hence the equivalent sample for this data set can be as
large as 1,500. We first examine whether a value larger than 60 for the αj is necessary
to achieve a higher classification accuracy. The classification accuracies for various
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values of αj of the noninformative Dirichlet priors are depicted in Fig. 2. We can see
that when αj is between 30 and 60, all curves gradually decline except the data set
“balance-scale”. This data set has four discrete attributes, and every attribute has five
possible outcomes. Every possible outcome combination of the four attributes appears
in this data set, hence it has 625 instances. The value of αj has a tiny impact on the
classification accuracy of this data set, even when the value of αj is 500. As shown
in Table 12, the best noninformative Dirichlet prior for this data set is the Dirichlet
distributions with the Laplace’s estimate. We therefore conclude that the value of αj in
the best noninformative Dirichlet priors for these 18 data sets will not be larger than 60.

Table 12 also shows the best noninformative Liouville priors and the comparison
with respect to the best noninformative Dirichlet priors, where the second, third, and
fourth columns of the best noninformative Liouville prior represent the percentage
of instances classified differently, the values of parameters d and ω, and the covari-
ance between any pair of variables, respectively. As pointed out in Sect. 4.2, we will
test 3,600 Liouville priors, which include the 60 Dirichlet priors for searching the
best noninformative Dirichlet prior, to find the best noninformative Liouville prior
for each data set. It is therefore not surprising that for every data set the accuracy
resulting from the best noninformative Liouville prior is larger than or equal to the
accuracy resulting from the best noninformative Dirichlet prior, but the differences
are all smaller 0.011. An interesting finding is that only one of the 18 covariances is
positive and close to zero. This suggests that to achieve a higher accuracy, setting all
variables to be negatively correlated is generally better than setting all variables to
be positively correlated. Since the sum of the variables in a multivariate distribution
defined on the unit simplex has an upper bound one, for realistic cases, it is unlikely
that all variables can be significantly positively correlated.

The best noninformative generalized Dirichlet priors are summarized in Table 13.
We only show the values of parameters α1 through αk, because βj = (k−j+1)×αj for
j = 1, 2, . . ., k. As stated in Sect. 4.2, the noninformative generalized Dirichlet priors
tested for a data set generally include only one of the 60 noninformative Dirichlet
priors for searching the best Dirichlet prior. Thus, it is possible that for a given data
set, the accuracy resulting from the best noninformative generalized Dirichlet prior
is smaller than the accuracy resulting from the best noninformative Dirichlet prior.
However, the best noninformative generalized Dirichlet priors outperform the best
noninformative Dirichlet priors and the best noninformative Liouville priors in 17 and
16 of the 18 data sets, respectively. The three best noninformative priors have the same
performance only in the data set “wine”, because the accuracy of this data set is very
close to one and the number of instances in this data set is less than 200.

The NVmax, NVmin, Covmax, and Covmin in Table 13 represent the maximal nor-
malized variance, the minimal normalized variance, the maximal covariance, and the
minimal covariance resulting from the best noninformative generalized Dirichlet prior,
respectively. An interesting result is that 16 of the 18 best noninformative generalized
Dirichlet priors include positive correlations among variables, as indicated by the
data given in column Covmax. Thus, allowing some variables in a prior for the naïve
Bayesian classifier to be positively correlated can be beneficial. Note also that the range
of NVmax/NVmin is between 4 and 32. This demonstrates that a reasonable prior for the
naïve Bayesian classifier should exhibit different confidence levels about the estimates.
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Fig. 2 The classification accuracies for various values of αj of the noninformative Dirichlet priors
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Table 12 The best noninformative Dirichlet priors and the best noninformative Liouville priors

Data set (No. of instances) Best Dirichlet prior Best Liouville prior

Accuracy αj Accuracy % (d, ω) Covariance

Australian (690) 85.58 13 85.80 1.45 (21, 7) −0.000015
Balance-scale (625) 90.58 1 90.77 0.48 (2, 3) −0.003889
Breast-w (699) 97.45 1 97.45 0 (1, 1) −0.000909
Cleve (303) 83.85 3 83.96 9.24 (56, 5) 0.000002
Ecoli (336) 82.50 1 82.50 0 (1, 1) −0.000909
Glass (214) 59.35 1 59.64 2.80 (1, 4) −0.000976
Haberman (306) 75.54 1 75.84 1.63 (3, 1) −0.000260
Heart (270) 85.08 27 85.37 1.11 (26, 31) −0.000039
Hepatitis (155) 86.93 3 86.93 0 (3, 3) −0.000323
Iris (150) 93.19 1 93.81 0.67 (1, 2) −0.000952
Liver (345) 63.33 4 64.38 2.32 (3, 1) −0.000260
New-thyroid (215) 91.86 1 92.23 0.47 (1, 23) −0.000996
Pima (768) 76.16 4 76.33 0.65 (4, 1) −0.000172
Segment (2,310) 88.93 1 88.93 0 (1, 1) −0.000909
Tae (151) 52.63 1 52.63 0 (1, 1) −0.000055
Vehicle (946) 61.90 18 62.13 0.42 (17, 10) −0.000054
Wine (178) 97.18 2 97.18 0 (1, 34) −0.000997
Yeast (1,484) 57.58 1 57.74 2.83 (2, 1) −0.000431

Table 13 The best noninformative generalized Dirichlet priors

Data set Accuracy α1 through αk % NVmax NVmin Covmax Covmin

Australian 86.17 4, 1, 1, 32, 26, 4, 28,
1, 24, 13, 1, 1, 1

2.32 0.066127 0.003314 0.000169 −0.000834

Balance-scale 90.97 1, 2, 8, 1 0.96 0.166667 0.041667 0.001481 −0.006667
Breast-w 97.57 1, 1, 1, 15, 1, 1, 1,

1, 1
0.14 0.090909 0.010863 0.000292 −0.001081

Cleve 84.01 1, 3, 15, 1, 1, 1, 1, 1, 13 2.64 0.090909 0.008145 0.000062 −0.001112
Ecoli 83.16 7, 1, 1, 1, 6, 1, 1, 1, 1 4.46 0.089202 0.014085 0.000232 −0.001189
Glass 62.71 1, 44, 1, 1, 1, 1, 4,

9, 2
7.01 0.090909 0.003384 0.001038 −0.001018

Haberman 76.40 5, 2, 1, 1, 3, 7, 4, 1, 1 2.94 0.088152 0.019401 0.000278 −0.001860
Heart 85.92 27, 24, 1, 32, 3, 1,

1, 1, 3
5.56 0.086615 0.003690 0.000124 −0.001430

Hepatitis 88.18 7, 3, 1, 1, 1, 1, 1, 59, 1 1.29 0.087612 0.014085 0.001856 −0.001057
Iris 96.68 1, 1, 1, 4, 17, 1, 1, 1, 1 3.33 0.090909 0.010629 0.000348 −0.001275
Liver 69.26 1, 28, 4, 29, 1, 42,

1, 48, 1
13.33 0.090909 0.004671 0.001081 −0.001631

New-thyroid 92.23 1, 5, 1, 1, 1, 1, 1, 1, 1 0.47 0.090909 0.020641 −0.000119 −0.000997
Pima 77.41 16, 1, 3, 1, 1, 1, 1, 8, 4 2.47 0.089027 0.006211 0.001413 −0.001084
Segment 89.18 6, 1, 1, 1, 1, 1, 1, 37, 4 2.81 0.089253 0.016393 0.001915 −0.000984
Tae 59.24 5, 1, 2, 1, 1, 2, 1, 1, 2,

1, 3, 3, 1, 1, 2, 1, 1, 1,
1, 1, 1, 1, 3, 1, 1

11.26 0.036947 0.007634 0.000018 −0.000077

Vehicle 64.79 1, 55, 58, 45, 5, 31,
1, 1, 1

9.09 0.090909 0.002841 0.000112 −0.001845

Wine 97.18 1, 2, 1, 23, 1, 1, 1, 1, 1 1.12 0.090909 0.007904 0.000265 −0.001138
Yeast 58.01 1, 1, 4, 1, 2, 1, 1, 1, 1 3.71 0.090909 0.026630 −0.000083 −0.001128
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5.3 Discussion

When priors are noninformative and unconfident, the generalized Dirichlet distribution
can generally perform at least as good as the Dirichlet distribution, while the Liou-
ville distribution usually results in a lower classification accuracy with respect to the
Dirichlet distribution. The reason for this could be that forcing the variables with the
unit-sum constraint to be all positively correlated and have the same confidence level
is inappropriate for most real data sets. The variables in a noninformative Liouville
random vector must have the same normalized variance and be either all positively or
all negatively correlated. That is why only one of the 18 best noninformative Liouville
priors given in Table 12 allows variables to be all positively correlated. Note, however,
that the value of that positive covariance is very close to zero.

When all priors are noninformative and unconfident, the accuracies resulting from
the Dirichlet, the generalized Dirichlet, and the Liouville distributions are not signif-
icantly different. In many of these cases, even if the generalized Dirichlet distribution
outperforms the Dirichlet and the Liouville distributions, we are not totally sure that
releasing the two requirements of the Dirichlet assumption can assist in increasing
the performance of the naïve Bayesian classifier. Thus, we attempted to increase the
confidence levels about priors to search for the best noninformative Dirichlet, gen-
eralized Dirichlet, and Liouville priors. The experimental results again show that the
generalized Dirichlet distribution is the best, and unlike the Liouville distribution, the
generalized Dirichlet distribution greatly enhances the classification accuracy of the
naïve Bayesian classifier in several data sets.

Setting all variables to be positively correlated can be useless to the performance
of the naïve Bayesian classifier, as demonstrated by the noninformative Liouville pri-
ors. However, allowing some variables to be positively correlated can be beneficial to
the operations of the naïve Bayesian classifier. Almost all of the best noninformative
generalized Dirichlet priors given in Table 13 include some, but not all, positively
correlated variables. Since an appropriate prior for a naïve Bayesian classifier must be
defined on the unit simplex, an observation for some possible outcome j will increase
the occurrence probability of this outcome and generally decrease the occurrence
probabilities of some, but not all, other possible outcomes. Thus, not only is the
negative-correlation requirement of the Dirichlet assumption inappropriate, but so is
the requirement of totally positive correlation.

An observation can be an occurrence of either outcome j or some other possi-
ble outcome. From the viewpoint of outcome j, an observation is the result of a
Bernoulli test. Let pj be the probability for an observation to be outcome j, and
let p̄j be the estimate of pj from a sample with n observations. When npj ≥ 5
and n(1 − pj) ≥ 5, by the central limit theorem, the sampling distribution of p̄j is
approximately a normal distribution with mean pj and variance pj(1 − pj)/n (Ander-
son et al. 2006). In this case, we have NV(p̄j) = 1/n that does not depend on
the index j. All estimates p̄j therefore have the same normalized variance when
the observations are independent and data size n is large. Note, however, that the
minimal value of n for satisfying the two inequalities npj ≥ 5 and n(1 − pj)≥ 5 will
be different for different values of pj. This implies that assuming the occurrence
probabilities of all possible outcomes to have the same confidence level is not
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reasonable. Our experimental results show that the naïve Bayesian classifiers with
noninformative generalized Dirichlet priors usually achieve better prediction accu-
racies, and that all of the best noninformative generalized Dirichlet random vectors
allow variables to have different normalized variances. These could be evidence of the
inappropriateness of the equal-confidence requirement of the Dirichlet assumption.

6 Conclusions

The Dirichlet assumption is essential to the operation of naïve Bayesian classifiers.
This assumption implies two requirements about variables: negative correlation and
an equal confidence level measured by the normalized variance. In this article, we
proposed two different multivariate distributions, generalized Dirichlet and Liouville
distributions, defined on the unit simplex as the priors of naïve Bayesian classifiers
to investigate the impact of the Dirichlet assumption. The noninformative generalized
Dirichlet prior can release both requirements, while the noninformative Liouville prior
can release only the negative-correlation requirement.

A Dirichlet prior with the Laplace’s estimate has two implications: noninformative
and unconfident. To test the appropriateness of the Dirichlet assumption, we first pre-
sented the ways to construct generalized Dirichlet and Liouville priors that are also
noninformative and unconfident for naïve Bayesian classifiers. When the priors are all
unconfident, the resulting classification accuracies can only be slightly different. We
therefore introduced a way to study the performance of the naïve Bayesian classifier
when the priors are noninformative but can have high confidence levels about some
estimates.

With respect to the Dirichlet priors with the Laplace’s estimate, our experimental
results on 18 real data sets show that, on average, at most 2.3% of the instances are
classified differently when naïve Bayesian classifiers have noninformative and uncon-
fident generalized Dirichlet or Liouville priors. Since all priors are still unconfident, the
prediction accuracies for various prior families are similar. In this case, the prediction
accuracy resulting from a generalized Dirichlet prior is usually better, while a Liou-
ville prior generally results in a relatively lower prediction accuracy. When priors allow
high confidence levels about some estimates, the generalized Dirichlet distribution is
still the best among the three distribution families, and the percentage of instances
classified differently by the best noninformative Dirichlet priors and the best nonin-
formative generalized Dirichlet priors can be larger than 10%. The best noninformative
generalized Dirichlet priors indicate that a reasonable prior for the naïve Bayesian clas-
sifier should allow variables to be positively correlated and have different confidence
levels about their mean values. Thus, not only is the Dirichlet assumption in naïve
Bayesian classifiers inappropriate, but also forcing the variables to be all positively cor-
related can generally deteriorate the classification accuracy of such classifiers. Multi-
variate distributions that possess the conjugate property and allow different confidence
levels and alternate correlation relations for variables should be more suitable priors.

Since generalized Dirichlet priors usually result in higher classification accuracies,
it should be of interest to investigate how to derive the most appropriate generalized
Dirichlet prior from data to improve the performance of the naïve Bayesian classifier.
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An efficient way to determine whether more complicated priors are necessary for a
data set can be the focus of future research.

The computational complexity of the approach proposed in this study for searching
the best noninformative generalized Dirichlet prior is linearly proportional to the max-
imum of the numbers of possible outcomes of the attributes in a data set. When the
maximum is not large, our approach can be executed efficiently. However, in applying
the naïve Bayesian classifier to text classification, the number of variables or words
in a generalized Dirichlet prior can be tens of thousands. This makes our approach
time-consuming in searching for the best noninformative generalized Dirichlet prior.
A more efficient way for this kind of search should be developed to enhance the
applicability of the naïve Bayesian classifiers for text classification.
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